#1 vsxp
接下来如何把它打印成你希望的格式,就是你的事情了。
缺点:这种方法很简单,容易理解,好上手。但是也有一些缺点。主要是因为运行速度很慢,由于得到每个节点都需要进行数据库查询,数据量大的时候要进行很多查询才能完成一个树。另外由于要进行递归运算,递归的每一级都需要占用一些内存所以在空间利用上效率也比较低。
预排序遍历树算法(modified preorder tree traversal algorithm)
现在让我们看一看另外一种不使用递归计算,更加快速的方法,这就是预排序遍历树算法(modified preorder tree traversal algorithm) 这种方法大家可能接触的比较少,初次使用也不像上面的方法容易理解,但是由于这种方法不使用递归查询算法,有更高的查询效率。
我们首先将多级数据按照下面的方式画在纸上,在根节点Food的左侧写上 1 然后沿着这个树继续向下 在 Fruit 的左侧写上 2 然后继续前进,沿着整个树的边缘给每一个节点都标上左侧和右侧的数字。最后一个数字是标在Food 右侧的 18。 在下面的这张图中你可以看到整个标好了数字的多级结构。(没有看懂?用你的手指指着数字从1数到18就明白怎么回事了。还不明白,再数一遍,注意要移动你的手指)。
这些数字标明了各个节点之间的关系,"Red"的号是3和6,它是 "Food" 1-18 的子孙节点。 同样,我们可以看到 所有左值大于2和右值小于11的节点 都是"Fruit" 2-11 的子孙节点
1 Food 18
|
+---------------------------------------+
| |
2 Fruit 11 12 Meat 17
| |
+------------------------+ +---------------------+
| | | |
3 Red 6 7 Yellow 10 13 Beef 14 15 Pork 16
| |
4 Cherry 5 8 Banana 9
这样整个树状结构可以通过左右值来存储到数据库中。继续之前,我们看一看下面整理过的数据表。
+-----------------------+-----+-----+
| parent | name | lft | rgt |
+-----------------------+-----+-----+
| | Food | 1 | 18 |
| Food | Fruit | 2 | 11 |
| Fruit | Red | 3 | 6 |
| Red | Cherry | 4 | 5 |
| Fruit | Yellow | 7 | 10 |
| Yellow | Banana | 8 | 9 |
| Food | Meat | 12 | 17 |
| Meat | Beef | 13 | 14 |
| Meat | Pork | 15 | 16 |
+-----------------------+-----+-----+
注意:由于"left"和"right"在 SQL中有特殊的意义,所以我们需要用"lft"和"rgt"来表示左右字段。 另外这种结构中不再需要"parent"字段来表示树状结构。也就是 说下面这样的表结构就足够了。
+------------+-----+-----+
| name | lft | rgt |
+------------+-----+-----+
| Food | 1 | 18 |
| Fruit | 2 | 11 |
| Red | 3 | 6 |
| Cherry | 4 | 5 |
| Yellow | 7 | 10 |
| Banana | 8 | 9 |
| Meat | 12 | 17 |
| Beef | 13 | 14 |
| Pork | 15 | 16 |
+------------+-----+-----+
好了我们现在可以从数据库中获取数据了,例如我们需要得到"Fruit"项下的所有所有节点就可以这样写查询语句: SELECT * FROM tree WHERE lft BETWEEN 2 AND 11; 这个查询得到了以下的结果。
+------------+-----+-----+
| name | lft | rgt |
+------------+-----+-----+
| Fruit | 2 | 11 |
| Red | 3 | 6 |
| Cherry | 4 | 5 |
| Yellow | 7 | 10 |
| Banana | 8 | 9 |
+------------+-----+-----+
看到了吧,只要一个查询就可以得到所有这些节点。为了能够像上面的递归函数那样显示整个树状结构,我们还需要对这样的查询进行排序。用节点的左值进行排序:
SELECT * FROM tree WHERE lft BETWEEN 2 AND 11 ORDER BY lft ASC;
剩下的问题如何显示层级的缩进了。
function display_tree($root)
{
// 得到根节点的左右值
$result = mysql_query('SELECT lft, rgt FROM tree '.'WHERE name="'.$root.'";');
$row = mysql_fetch_array($result);
// 准备一个空的右值堆栈
$right = array();
// 获得根基点的所有子孙节点
$result = mysql_query('SELECT name, lft, rgt FROM tree '.
'WHERE lft BETWEEN '.$row['lft'].' AND '.
$row['rgt'].' ORDER BY lft ASC;');
// 显示每一行
while ($row = mysql_fetch_array($result))
{
// only check stack if there is one
if (count($right)>0)
{
// 检查我们是否应该将节点移出堆栈
while ($right[count($right)-1]<$row['rgt'])
{
array_pop($right);
}
}
// 缩进显示节点的名称
echo str_repeat(' ',count($right)).$row['name']."n";
// 将这个节点加入到堆栈中
$right[] = $row['rgt'];
}
}
?>
如果你运行一下以上的函数就会得到和递归函数一样的结果。只是我们的这个新的函数可能会更快一些,因为只有2次数据库查询。 要获知一个节点的路径就更简单了,如果我们想知道Cherry 的路径就利用它的左右值4和5来做一个查询。
SELECT name FROM tree WHERE lft < 4 AND rgt > 5 ORDER BY lft ASC;
这样就会得到以下的结果:
+------------+
| name |
+------------+
| Food |
| Fruit |
| Red |
+------------+
那么某个节点到底有多少子孙节点呢?很简单,子孙总数=(右值-左值-1)/2 descendants = (right – left - 1) / 2 不相信?自己算一算啦。用这个简单的公式,我们可以很快的算出"Fruit 2-11"节点有4个子孙节点,而"Banana 8-9"节点没有子孙节点,也就是说它不是一个父节点了。
很神奇吧?虽然我已经多次用过这个方法,但是每次这样做的时候还是感到很神奇。
这的确是个很好的办法,但是有什么办法能够帮我们建立这样有左右值的数据表呢?这里再介绍一个函数给大家,这个函数可以将name和parent结构的表自动转换成带有左右值的数据表。
function rebuild_tree($parent, $left) {
// the right value of this node is the left value + 1
$right = $left+1;
// get all children of this node
$result = mysql_query('SELECT name FROM tree '.
'WHERE parent="'.$parent.'";');
while ($row = mysql_fetch_array($result)) {
// recursive execution of this function for each
// child of this node
// $right is the current right value, which is
// incremented by the rebuild_tree function
$right = rebuild_tree($row['name'], $right);
}
// we've got the left value, and now that we've processed
// the children of this node we also know the right value
mysql_query('UPDATE tree SET lft='.$left.', rgt='.
$right.' WHERE name="'.$parent.'";');
// return the right value of this node + 1
return $right+1;
}
?>
当然这个函数是一个递归函数,我们需要从根节点开始运行这个函数来重建一个带有左右值的树
rebuild_tree('Food',1);
这个函数看上去有些复杂,但是它的作用和手工对表进行编号一样,就是将立体多层结构的转换成一个带有左右值的数据表。
那么对于这样的结构我们该如何增加,更新和删除一个节点呢? 增加一个节点一般有两种方法:
保留原有的name 和parent结构,用老方法向数据中添加数据,每增加一条数据以后使用rebuild_tree函数对整个结构重新进行一次编号。
效率更高的办法是改变所有位于新节点右侧的数值。举例来说:我们想增加一种新的水果"Strawberry"(草莓)它将成为"Red"节点的最后一个子节点。首先我们需要为它腾出一些空间。"Red"的右值应当从6改成8,"Yellow 7-10 "的左右值则应当改成 9-12。 依次类推我们可以得知,如果要给新的值腾出空间需要给所有左右值大于5的节点 (5 是"Red"最后一个子节点的右值) 加上2。 所以我们这样进行数据库操作:
UPDATE tree SET rgt=rgt+2 WHERE rgt>5;
UPDATE tree SET lft=lft+2 WHERE lft>5;
这样就为新插入的值腾出了空间,现在可以在腾出的空间里建立一个新的数据节点了, 它的左右值分别是6和7
INSERT INTO tree SET lft=6, rgt=7, name='Strawberry';
再做一次查询看看吧!怎么样?很快吧。
好了,现在你可以用两种不同的方法设计你的多级数据库结构了,采用何种方式完全取决于你个人的判断,但是对于层次多数量大的结构我更喜欢第二种方法。如果查询量较小但是需要频繁添加和更新的数据,则第一种方法更为简便。
另外,如果数据库支持的话 你还可以将 rebuild_tree() 和 腾出空间的操作写成数据库端的触发器函数, 在插入和更新的时候自动执行, 这样可以得到更好的运行效率, 而且你添加新节点的SQL语句会变得更加简单。
2010-11-25 16:33:50